Estrogen enhances neurogenesis and behavioral recovery after stroke.
نویسندگان
چکیده
Stroke is a leading cause of permanent disability and death. It is well accepted that the principal mammalian estrogen (E2), 17-β estradiol, provides robust neuroprotection in a variety of brain injury models in animals of both sexes. E2 enhances neurogenesis after stroke in the subventricular zone; however, it is unknown if these cells survive long-term or enhance functional recovery. In this study, we examined stroke-induced neurogenesis in male, gonadally intact female, and ovariectomized female mice 2 and 6 weeks after stroke. Treatment with 17-β estradiol increased 5-bromo-2'-deoxyuridine-labeled cells at both time points in both the dentate gyrus and subventricular zone; the majority were colabeled with doublecortin at 2 weeks and with NeuN at 6 weeks. Stroke-induced neurogenesis was reduced in estrogen receptor knockout mice, as well as in mice lacking the gene for aromatase, which converts testosterone into E2. Improved behavioral deficits were seen in E2-treated mice, suggesting that E2-induced increases in poststroke neurogenesis contribute to poststroke recovery.
منابع مشابه
Effects of Postconditioning on Neurogenesis and Angiogenesis During the Recovery Phase After Focal Cerebral Ischemia.
BACKGROUND AND PURPOSE Postconditioning may be a clinically feasible way to protect the brain after a stroke. However, its effects during the recovery phase post stroke remain to be fully elucidated. Here, we examine the hypothesis that ischemic postconditioning amplifies neurogenesis and angiogenesis during stroke recovery. METHODS Male Sprague-Dawley rats were subjected to 100-minute transi...
متن کاملSonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke.
BACKGROUND AND PURPOSE Cerebrolysin, a mixture of neurotrophic peptides, enhances neurogenesis and improves neurological outcome in experimental neurodegenerative diseases and stroke. The Sonic hedgehog (Shh) signaling pathway stimulates neurogenesis after stroke. The present study tests whether the Shh pathway mediates cerebrolysin-induced neurogenesis and improves neurological outcome after s...
متن کاملEffects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke.
BACKGROUND AND PURPOSE Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. METHODS Twenty-four hours after photothrombo...
متن کاملIntravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis.
BACKGROUND AND PURPOSE The discovery of spontaneous neuronal replacement in the adult brain has shifted experimental stroke therapies toward a combined approach of preventing neuronal cell death and inducing neuronal plasticity. Brain-derived neurotrophic factor (BDNF) was shown to induce antiapoptotic mechanisms after stroke and to reduce infarct size and secondary neuronal cell death. Moreove...
متن کاملA neurovascular niche for neurogenesis after stroke.
Stroke causes cell death but also birth and migration of new neurons within sites of ischemic damage. The cellular environment that induces neuronal regeneration and migration after stroke has not been defined. We have used a model of long-distance migration of newly born neurons from the subventricular zone to cortex after stroke to define the cellular cues that induce neuronal regeneration af...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2011